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ABSTRACT: The question of the thickness of shock waves in a viscous
gas was treated in papers [1,2]. The present paper derives general
equations for solving problems concerning the flow of a medium inside
a shock wave layer, and the change of this layer in viscous media.

By way of an example we consider a problem of this type for a Kelvin
medium,

1. It is shown in paper [3] that discontinuity waves of zero thick-
ness cannot propagate in viscous media. We may suppose that as the
result of the action of viscous forces in such media shock waves are
really a layer inside which a rapid but continuous change of all func-
tions takes place. The thickness of the shock wave layer isnot the same
in different places.

In deriving the fundamental equations for solving the problem of
viscous flow inside the shock wave layer, we shall make the following
assumptions:

a) The thickness of the shock wave layer is small and the leading
and trailing fronts of the layer are parallel to each other in the first
approximation.

b) If the values of some quantity z are the same on both shock wave
fronts, then in the first approximation this quantity is independent of
the coordinate transverse to the shock wave layer, i.e.,

z=C for [z] = 0. 1.1)

Here C is a function independent of the transverse coocrdinate.

c) If the quantity z has different values on the shock wave fronts,
then we shall neglect its derivatives in directions lying in the plane
tangential to the fronts of the shock wave layer, compared with its
derivative in the transverse direction, i.e.,

2 =s,v v, for [5]K0. (1.2)

Here vy, vk are the covariant and contravariant components of the
normal to the shock wave layer fronts, We note that the less the thick-
ness of the shock wave layer, the more accurate relation (1.2) becoimes.

Since the shock wave layer is thin the dynamic conditions for dis-
continuities of density p, velocity vj and stress [4] oy; hold,

[p(r,—O1=0, [o¥' —p(@,—6)r]= 0. (1.3)
Applying (1.1) to these expressions we obtain
plo,—G)=C, o —Co=C,. 1.4)

Here C is an arbitrary function, Cj is an arbitrary vector independent
of the transverse coordinate. The first equation of (1.4) was obtained in
paper {1].

If the shock wave layer only interacts weakly with the main stream
of the medium, thenby analogy with boundary layer theory the problem
is first of all solved for the inviscid flow of a medium in which a shock
wave moves, In this case dynamic, kinematic, and geometric compati-
bility conditions [4] are fulfilled at the shock wave, Subsequently the
problem is solved for a shock wave layer where the boundary conditions
on the fronts of the layer are taken to be those for a shock wave in in-
viscid flow.

The velocity G may be taken to be the velocity of propagation of
some surface X situated inside the shock wave layer and parallel to its
fronts. For simplicity this surface may be taken to be the middle sur-
face of the layer where some function assumes its mean value.

Lower indices 1 and 2 will denote the values of quantities at the
trailing and leading fronts of the shock layer, respectively. Since the
medium undergoes large deformations in the shock wave layer the
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finite nature of these deformations must be allowed for when writing
down the equations governing the state of the medium in the layer.
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2. In what follows we shall consider as an example the problem of
the thickness of a shock wave layer and the flow inside this layer in
the case of a Kelvin medium taking into account the finite magnitude
of the deformations and the convective terms in determining the ve-
locity during displacement. In this connection we shall treat the prob-
lem of the propagation of a longitudinal shock wave in an elastic me-
dium formulated in the same way. The problem of shock wave prop-
agation in an elastic medium where the situation is linearized was
treated in paper [4].

We shall write Hooke's law in the form

Gy = heyb; 42, ey =12 (uy jtu; s — i (2.1)
where u; is the displacement vector.

In order to simplify the problem we shall choose the system of co-
ordinates so that its origin lies on the surface Z, and the x;, x, plane
coincides with the tangent plane of this surface. We introduce the no-
tation

uig = u, Ugg =2, ug g == w. (2.2)
For a longitudinal wave [u] = [v]= 0, [w] = 0. Determining the

velocity through displacement we find in the first approximation

o3 = (us, ; — Gw) / (1 — w). (2.3)

Substituting (2.1)-(2.3)into(1.8) fori=3, we obtain an expression for
determining the propagation velocity for a longitudinal wave of a strong
discontinuity in an elastic medium

(G—us i _1—w

A+ 2p p2

(1—w2)(1—w1)<1~— 11132;@)

(2.4)
It follows from (2.4) that if w; and w, aresmall, thenaweaklongi-
tudinal shock wave propagates with the same velocity as a longitudinal
acceleration wave. If the medium is compressed on both sides of the
surface (w < 0), then it propagates faster than an acceleration wave.
If the medium is stzetched on both sides of the wave, its propagation
velocity is less than the velocity of an acceleration wave. For very
strong extension when wy or wy = 1, the propagation velocity of the
shock wave decreases to zero. For strong compression when w, or
wy ~> —, the shock wave velocity increases without limit.
3. We shall write the relation between the stress and deformation
tensors and the velocity for a Kelvin medium in the form [5]

0;5= (heyy + Eeyy) 8;; + 2pe;; + 2me,;. (3.1)
We have from (2.3)
(I—ww ; —(C—ug Jw
V3,3 = < 2 (3.2)

(1 — w)?
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Simulitaneousty solving the system of equations (1.4), (2.8), (3.1), and
(3.2), and taking(1.2)into account, we obtain the following nonlinear
equation for the function w:

(1 —w){aud — 3aw? L [C3+ a (2 + u? - »2) -
+ C(Gw —uy Jw—[Cs+a (u? + 23]} =
=E 2@ —uy Juw— (1 —ww,] (e="%A+p. (3.9)

We shall assume that the viscosity does not affect the flow at the
leading and trailing fronts of the shock wave. In this case w; and w,
are the roots of the polynomial on the left side of (3.3). Equation (3.s)
may be written in the form

a (1 —w)(w—w) (v —w) (w—we) =

= EF+20 U6 —updws— 1 —wyw,]. (3.4)
If wywp # 0, then the root is

Cs+ a(u? -+ v?)
Wy = —————— .

awyws

(3.5)

In the case of loading or unloading waves wywy = 0 the root wy is

Cs+a(2 4 ut+0%) + C(Gu—u, ;)

Wo == aw* ?
. [ (1=0)
w¥ = {wx (= O). (3.6)

In order to find an expression for the root w, in terms of w; and w,,
we shall find the values of C; and C in terms of quantities at the shock
wave, Setting w = wy in the left side of (3.3) and equating it to zero
we obtain

+ C (GW2 fad usy i)

Cs = 2aw; — aw? — a (u? 4~ v?) y wy . (3.7)
From the first equation of (1.4) and (2.3) we have
= —pg (Gwy — ug, ) / (1 —wy) . (3.8)

Substituting (3.7), (3.8), and (2.4) into (3.5) and (3.6), respectively,
we obtain

we = 3 — (wy + wy), wy = 3 — w*, (3.9)
Thus in both cases (3.5) and (3.6) the difference wy — w=3 ~ (w +
+ w; + wp) is positive. The left side of (3.4) inside the shock wave
layer is positive.
Equation (3.4) may be integrated in the quasi-stationary state when
W, = 0. We shall write the boundary condition in the form

w="1 (w +w) for 2 =0 . (3.10)

When (3.4) is integrated with the condition {3.10), we obtain for
the case under consideration

(G —ug ) (E+2n)
-

T3

a
2(1 —w) 3(2— w1 —w)
X[allnz_wl_wz—{-agln 2 (wg —w) +
Wy — w1 2 (w — wn)
+a31n2——(w2_w)+a4ln “wz‘un J,
1
P = (g — 1) (1 — w1) (1 — wa) *
1
= g — 1) (wo — wi) (wo — wy) *
1
98 = (1 — we) (wo—ws) (wa — w1) *
1

(3.11)

T T —wn) (o — wr) (w — w3

Equation (3.11) determines the variation of the quantity w between
the values w; and wy. For x;—> tw the quantity w rapidly approaches
the asymptotic values of wy and w; (Fig. 1). The main change in w
occurs over a distance of the order

8(G—us J(E+2m)
T 322 — w1 — wn)¥(ws — wi) °

(3.12)

which may be regarded as the thickness of the shock wave layer.

It follows from (3.12) that this thickness decreases according as the
shock wave intensity is larger, the greater is the compression on the
medium on one side of the shock wave, or the smaller is the coeffi-
cient of viscosity. Thus very strong shock waves in a Kelvin medium
cai be treated as waves with no thickness. Weak shock waves in a
quasi-static process are very thick.
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